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ABSTRACT

Spatial variability of precipitation is analyzed to characterize to what extent precipitation observed at a

single location is representative of precipitation over a larger area. Characterization of precipitation repre-

sentativeness is made in probabilistic terms using a parametric approach, namely, by fitting a censored shifted

gamma distribution to observation measurements. Parameters are estimated and analyzed for independent

precipitation datasets, among which one is based on high-density gauge measurements. The results of this

analysis serve as a basis for accounting for representativeness error in an ensemble verification process.

Uncertainty associated with the scale mismatch between forecast and observation is accounted for by

applying a perturbed-ensemble approach before the computation of scores. Verification results reveal a large

impact of representativeness error on precipitation forecast reliability and skill estimates. The parametric

model and estimated coefficients presented in this study could be used directly for forecast postprocessing to

partly compensate for the limitation of anymodeling system in terms of precipitation subgrid-scale variability.

1. Introduction

The scale mismatch between in situ observations and

gridded numerical weather prediction (NWP) forecasts

is called representativeness error and is a challenge to be

addressed in a number of applications (Göber et al.

2008; Janjić et al. 2018). For example, in forecast veri-

fication, skill estimates can differ substantially when the

forecast is compared against its own analysis field or

against point observations (Pinson and Hagedorn 2012;

Feldmann et al. 2019). The presence of representative-

ness error in the latter case contributes to skill estimate

differences. In more general terms, observation errors in

forecast verification (the main topic of this paper) have

gathered more attention as the accuracy of the forecast

approaches the accuracy of observation measurements

(Saetra et al. 2004; Candille and Talagrand 2008; Santos

and Ghelli 2012; Röpnack et al. 2013; Massonnet et al.

2016; Jolliffe 2017; Ferro 2017; Duc and Saito 2018).

From the literature, we know that accounting for ob-

servation errors can have a large impact in the context of

ensemble forecast verification, in particular when fo-

cusing on forecast reliability (Saetra et al. 2004; Candille

and Talagrand 2008; Yamaguchi et al. 2016). Ensemble

forecasts are a collection of forecasts valid for the same

lead time that aim to capture the forecast uncertainty of

the day (Leutbecher and Palmer 2008), and reliability

is a desirable property for an ensemble forecast. Broadly

speaking, a reliable ensemble forecast ensures statistical

consistency between the dispersion of the ensemble (which

represents the forecast uncertainty) and the forecast error
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with respect to the observations. If observation errors

are not accounted for during the ensemble verification

process, then the investigator may draw inappropriate

conclusions about the quality of the prediction system.

For example, suppose a coarser-resolution global en-

semble appears (misleadingly) to be reliable with re-

spect to point observations. With respect to verification

against coarser gridded analyses, it may actually be

overspread, indicating the potential for changes in the

ensemble prediction system to provide less spread and

potentially greater forecast resolution. Ultimately, dis-

missing observation errors in the verification process can

have as an unfortunate consequence the inappropriate

ranking of competing forecasting systems (Ferro 2017).

To account for observation uncertainty in the en-

semble verification process, observation errors must first

be characterized. This characterization is one objective

of this paper with a focus on precipitation. Observation

errors are the sum of measurement errors and repre-

sentativeness errors.1 In the following, we assume that

representativeness error is the dominant contribution to

observation errors associated with precipitation gauge

measurements for our applications (Lopez et al. 2011).

Representativeness of precipitation observations has

already been investigated in previous studies, in partic-

ular in the framework of data assimilation (Lopez 2011,

2013). But here the focus is on daily precipitation (rather

than short accumulation periods) point observations

(rather than aggregated observations), and we apply a

state-of the-art probabilistic parametric model.

The representativeness of precipitation observations

can be described in probabilistic terms as the relation-

ship between observations at two different spatial scales.

Statistical models are used to estimate the properties of

precipitation representativeness error and its peculiar

characteristics: a probability distribution with a long tail

and an uncertainty that grows with precipitation inten-

sity. These statistical methods have been developed

in the context of ensemble postprocessing to account

for model limitation in representing subgrid variability

and correct simultaneously for systematic forecast defi-

ciencies such as biases (Wilks and Vannitsem 2018).

Among others, successful methods encompass extended

logistic regression (Wilks 2009; Ben Bouallègue 2013),

quantile mapping (Hamill et al. 2017; Hamill and

Scheuerer 2018), and nonhomogeneous regression

(Scheuerer and Hamill 2015; Baran and Nemoda 2016).

The latter approach, which relies on a parametric model

based on the gamma distribution, is employed in this

study. Because of its simplicity, the method followed

here could be considered as a benchmark for more

complex approaches that, for example, describe pre-

cipitation subgrid variability as a function of the weather

situation (Pillosu and Hewson 2017).

The estimated uncertainty associated with precipita-

tion measurements can be incorporated in the process

that compares ensemble precipitation forecasts against

synoptic station (SYNOP) observations.2 Another ob-

jective of this paper is to assess the impact of accounting

for observation representativeness on ensemble pre-

cipitation verification results. Practically, a perturbed-

ensemble method is applied. It consists of adding

observation uncertainty to the forecasts. A perturba-

tion drawn from the parametric distributions is added

to each ensemble member. The impact of this ap-

proach on verification results is illustrated when applied

to the ensemble predictions generated at the European

Centre forMedium-RangeWeather Forecasts (ECMWF).

This paper is organized as follows: section 2 intro-

duces the observation datasets, the parametric model

used for the description of the relationship between

observations at different scales, and the verification

metrics for the validation of this approach. Section 3

presents details of the methodology and findings related

to the characterization of the observation uncertainty.

Section 4 describes how to account for observation un-

certainty in the verification process and discusses the

impact on verification results. Section 5 concludes and

indicates another possible application of the methodol-

ogy developed here.

2. Data, parametric model, and validation metrics

a. Data

Spatial representativeness of precipitation observa-

tions is analyzed based on three independent datasets, to

check the consistency of estimates from differing data

sources. We focus exclusively on 24-h accumulated

precipitation. The amount of representativeness error

will depend on the accumulation period, with less rep-

resentativeness error for longer accumulation periods

than for shorter ones. The three datasets correspond to

1) a high-density point observation dataset based on

rain gauges (HDOBS),

2) radar observations from theNextGenerationRadars

(NEXRAD), and

1 The reader is invited to refer to Janjić et al. (2018) for a discussion

on representativeness definitions in the literature and to Tustison et al.

(2001) for theoretical considerations on representativeness error.

2 Note that the observation uncertainty estimates are indepen-

dent of the forecast and so could be used in other applications.
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3) short-range forecasts from the Model for Prediction

Across Scales (MPAS).

The first two datasets are observations in the sense of

instrument-derived measurements, the third dataset is

an observation proxy, an NWP model output at short

forecast range. Only the first dataset provides point

measurements, and the two others are gridded datasets

representing precipitation spatial averages.

The spatial coverage differs from one dataset to an-

other as illustrated in Fig. 1. HDOBS covers parts

of Europe, NEXRAD is limited to the conterminous

United States with a spatial resolution of 4 km, while

MPAS data are global with a grid spacing of 3 km.

Similarly, the temporal coverage differs between data-

sets: different combinations of observing days are se-

lected in each case as detailed below. This is acceptable

for our study because the analysis of precipitation vari-

ability is performed for each dataset separately.

1) HDOBS

HDOBS corresponds to rain gauge measurements

provided by ECMWF member and cooperating states

in addition to the network of SYNOP observations

(Haiden et al. 2018). The dataset covers Europe and the

number of measurements varies from day to day. The

station density relative to SYNOP is typically enhanced

by a factor of 2–10. In this study, we use four noncon-

secutive months of data (January, April, July, and

October 2018) with on average around 5000 observa-

tions per day.

2) NEXRAD

NEXRAD is a U.S.-wide network of Weather

Surveillance Radar-1988 Doppler (WSR-88D) instru-

ments (Fulton et al. 1998). This study is based on a

limited sample of observations days, corresponding to days

1, 8, 15, 22, and 29 of the months of June 2017, November

2017, and February 2018. Observations west of longitude

1058Ware excluded from the analysis to reduce the impact

of issues in the radar data that are due to orography.

3) MPAS

MPAS forecasts are based on a global nonhydrostatic

model with a spherical Voronoi mesh (Skamarock et al.

2012). Precipitation is accumulated between forecast

ranges 12 and 36h on a uniform global mesh with 3-km

grid spacing. The MPAS dataset comprises the three

following days: 2 December 2003, 22 November 2011,

and 8 February 2013. They correspond to case 1, case 2,

and case 3 of a study on the predictive skill of sub-

seasonal predictions in a global convection-permitting

model (Weber and Mass 2019). Here, only midlatitudes

(latitudes between 658 and 258S and 258 and 658N) are

considered. Note that MPAS is not used for verification

but as a dataset for estimating representativeness error

characteristics. Characterization of forecast represen-

tativeness error as opposed to observation representa-

tiveness error is also beyond the scope of this study.

b. Parametric model

The parametric model of variability on unrepresented

scales consists of fitting a censored, shifted gamma dis-

tribution (CSGD). It has been shown that the CSGD is

well suited for describing precipitation probability dis-

tributions (Scheuerer and Hamill 2015). We recall here

the formalism of this model before explaining how it is

applied to the description of observation uncertainty.

The gamma distribution is a two-parameter distribu-

tion, with scale parameter k and shape parameter u. The

shift of the gamma distribution associated with a left

censoring to 0 allows us to better represent the proba-

bility of no precipitation. The skewness of the gamma

distribution depends only on its shape parameter u. The

two parameters k and u are related to the mean m and

standard deviation s of the gamma distribution by

k5m2/s2 and u5s2/m . (1)

The cumulative distribution function of CSGD (with left

censoring at zero, denoted ~Fk,u,d) takes the form

~F
k,u,d

(y)5

8><
>:

F
k

�
y1 d

u

�
for y$ 0

0 for y, 0

, (2)

where Fk is the cumulative distribution function of

gamma distribution with unit scale and shape pa-

rameter k, and with d . 0, the shift parameters

that controls the probability of zero precipitation

(Scheuerer and Hamill 2015).

The CSGD is fitted in the form of a conditional dis-

tribution for observed precipitation at one spatial scale,

say B, given the observed precipitation at a larger scale,

say A. More precisely, we are interested in the condi-

tional probability

P(Y
B
jY

A
) ,

which is the probability of the random variable YB,

representing the observation at smaller scale, given the

random variable YA, representing the observation at a

larger scale (e.g., the grid scale of an NWP model).

We assume that this conditional distribution takes the

parametric form described by a CSGD [Eq. (2)].

Exploratory analysis of the model sensitivity to the

number of parameters suggests that five coefficients are
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FIG. 1. Twenty-four-hour accumulated precipitation (mm) as seen by the three datasets

used in this study: (top) HDOBS measurements on 1 Jan 2018, (middle) NEXRAD ob-

servation on 18 Nov 2017, and (bottom) MPAS short-range forecast on 22 Nov 2011.
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required to describe this distribution of YB accurately for

the three studied datasets. Two coefficients (a0 and a1)

are associated with the mean of the distribution mB:

m
B
(y

A
)5a

0
1a

1
y
A
, (3)

which is a function of the observed precipitation at scale

A (yA). Two other coefficients (b0 and b1) are associated

with the standard deviation of the distribution sB:

s
B
(y

A
)5b

0
1b

1
(y

A
)1/2 , (4)

which is a function of the square root of the observed

precipitation at scale A [(yA)
1/2]. The use of a power

transformation in the relationship between precipitation

intensity and uncertainty can be traced back to pioneering

work on postprocessing of ensemble precipitation fore-

casts (Hamill et al. 2008). The fifth coefficient corresponds

to d, which defines the shift associated with the CSGD.

The five distribution parameters (a0, a1, b0, b1, and d)

are estimated byminimizing themean continuous ranked

probability score (CRPS) over a test sample (see

section 3a). FollowingGneiting andRaftery (2007), the

CRPS is defined for a distribution F(yA) and an ob-

servation yB as follows:

CRPS5E
X
jX2 y

B
j2 0:5E

X,X 0 jX2X 0j , (5)

where X and X0 are independent random variables with

distribution F(yA). In the case in which F takes the form

of a CSGD [Eq. (2)], the CRPS can be expressed in a

closed form [see Eq. (10) in Scheuerer andHamill 2015].

Optimization is performed using squared parameters to

ensure that they are positive, and with a0 5 0.1, a1 5 1,

b0 5 0.1, b1 5 1, and d 5 0.1 as initial values of the

optimization process.

c. PIT histograms

The validity of the parametric method described in

the previous section is checked by means of probability

integral transform (PIT; Raftery et al. 2005) histograms.

We apply the following diagnostic procedure: we con-

sider percentiles associated with the CSGD for each

element of the test sample. Percentiles are derived for

equidistant probability levels ranging from 5% to 95%

with a 5% interval. The rank of the observations when

pooled with the distribution percentiles is aggregated

and reported on a histogram.

PIT histograms are interpreted in the same way as

rank histograms (Hamill and Colucci 1997), where a

histogram close to a uniform distribution indicates reli-

ability. PIT (or rank) histograms can be summarized in a

single number (Wilks 2019). In the following, we com-

pute the reliability index (RI; Monache et al. 2006):

RI5
1

m
�
m11

i

����zi 2 1

m1 1

���� , (6)

wherem1 1 is the number of equally sized bins and zi is

the frequency of observations in the ith bin. RI takes a

minimum value of 0 when the system is perfectly cali-

brated. In addition, we assess reliability with an entropy

measure (c; Taillardat et al. 2016):

c5
21

log(m1 1)
�
m11

i51

z
i
log(z

i
) , (7)

which takes an optimum value of 1 when the system is

perfectly reliable and the sample size is infinite.

3. Observation representativeness error

In this section, observation errors are investigated

based on the datasets and parametric model pre-

sented in section 2. An observation error is meant

here as an outcome of the representativeness uncer-

tainty associated with smaller-scale measurements

with respect to observations averaged at a larger

scale. Fundamentally, the aim is to characterize the

relationship between precipitation averaged over an

areaA and precipitation measurements at B, where B

is a point within the area A. This characterization

defines the representativeness error associated with

point observations (such as SYNOP measurements)

and is used later in a forecast verification process

(see section 4).

a. Method

With HDOBS data, point measurements can be di-

rectly compared with areal observations. For this, we

consider single observations (denoted yB) and regularly

spaced neighborhood areas A defined as square areas

with length DA. When at least five observations are

found within an area, the averaged precipitation is

computed and is denoted yA. Repeating this for all days

of the dataset, we obtain a sample of pairs (yA, yB). This

is done separately for each month of the dataset. We

note that there is an uncertainty associated with this

method because we do not know the actual value of yA
but rather just an estimate that is based on a limited set

of point observations.3

An example of a sample (yA, yB) from the HDOBS

dataset is provided in Fig. 2 considering a neighborhood

size DA 5 20km. It shows how point observations (yB)

3 Increasing the minimum number of observations per grid box

has little impact on the results.
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do not always coincide with averaged precipitation

within a surrounding area (yA). Zero precipitation can

be observed at one specific location while the areal

precipitation can be large. There are also cases where

point measurements are large and areal observations

are much smaller. This illustrates the mismatch be-

tween areal and point observations that we aim to

characterize.

The next step is to fit the parametric model with the

pairs (yA, yB) to describe in probabilistic terms the

relationship between these two quantities. Parameters

of the CSGD are estimated for a range of neighbor-

hood sizes DA: 10, 20, . . . , 140, 150 km. The parameters

are estimated for each month separately, considering

randomly selected blocks of days within each month.

The parameter estimates are aggregated over the four

months by computing the median. By repeating the

process 1000 times, with a new random selection of

days each time, one obtains a distribution of parameter

estimates from which one can derive confidence inter-

vals. Eventually, the estimated parameters (â0, â1, b̂0,

b̂1, and d̂), as well as the corresponding uncertainty can

be plotted as a function of the size of the averaging

area DA.

For the two other datasets (NEXRAD and MPAS),

we infer the uncertainty associated with point mea-

surements based on gridded observations using an ex-

trapolation technique. For each of these datasets, we

proceed as follows:

d we randomly select a square area A with sides of

length DA within the data domain,
d we average the grid values within this area and denote

it yA,
d we randomly select a square area B with sides of

length DB within the area A, and
d we average the available measurements within this

area B and denote it yB.

We repeat these steps 1000 times to obtain a large

sample of pairs (yA, yB).

This time, the model parameters are estimated for a

range ofDA andDBwithDB,DA. For NEXRAD, with a

native grid spacing of 4 km, we use DA and DB in {4, 12,

20, 28, 36, 44, 52, 60, 68, 76, 84, 92, 100, 108, 116, 124, 132,

140, 148} km. For MPAS, with a native grid spacing of

3 km, we use DA and DB in {3, 12, 24, 36, 48, 60, 72, 84, 96,

108, 120, 132, 144} km. To extrapolate the parameters

for DB 5 0, we fix the scale of A (DA) and consider each

estimated parameter as a function of the scale ofB (DB).

Using a second-order approximation, we can represent

this function as a quadratic polynomial in DB, and finally

infer the parameter value for any DB.

The extrapolation procedure is illustrated in Fig. 3 for

b1, the most critical parameter of the CSGD model.

The parameters are estimated for all possible combi-

nations of DA and DB defined above, with the restriction

DB , DA. The results are presented as a function of DB,

where each line corresponds to a different larger-scale

A. As we can see, this function, b̂1(DB), can be approx-

imated by a second-order polynomial for each DA. For a

given size DA, the value of the function for DB 5 0 is

represented by a point: it corresponds to the extrapo-

lated value of the parameter b̂1 associated with point

measurements. Eventually, we obtain, for each model

parameter, the extrapolated values at DB5 0 for a range

of averaging areas DA.

In our analysis, the target scale corresponds to point

observations. However, one might be interested, for

example, in representativeness uncertainty of a gridded

precipitation dataset. In that case, the method followed

here could easily be adapted by setting the target scale

DB appropriately.

b. Parametric model results

Figure 4 is central to this study. The estimated CSGD

parameters (â0, â1, b̂0, b̂1, and d̂) are plotted as a

function of the size of the averaging area DA. The re-

sults are based on the HDOBS dataset. Extrapolated

model parameters based on NEXRAD and MPAS are

also plotted, showing an overall good agreement be-

tween the coefficients derived from the three inde-

pendent datasets.

FIG. 2. Example of a sample of pairs (yA, yB) where yA are av-

eraged observations over areas of 20 km by 20 km and yB are point

observations within the corresponding areas; yA and yB units are

millimeters per 24 hours. Observations are from the HDOBS

dataset for July 2018.
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This figure can be used as follows: for a given model,

representativeness uncertainty associated with the cor-

responding grid spacingDA can be directly inferred from

the red curve. So, Fig. 4 provides all required parame-

ter values for accounting for precipitation observation

representativeness error using our CSGD model.

A short description along with an interpretation of the

results is now provided. On the one hand, the estimated

coefficients associated with the mean of the distribution

(â0 and â1) do not vary substantially with the averaging

scale DA. The multiplicative parameter â1 is constant

around 1, while the additive parameter â0 is around 0.1mm

(24h)21 for averaging scales greater than 20km. Similarly,

the shift parameter d̂ is small and exhibits values that are

comparable to those of â0. So, the mean of the CSGD is

generally close to yA, which means that the expected mean

precipitation intensity does not vary across scales.

On the other hand, one of the two coefficients asso-

ciated with the variance of the distribution (b̂1) exhibits

larger variability across scales than the other coeffi-

cients. Parameters b̂0 and b̂1 influence the uncertainty

associated with the CSGD distribution. Indeed, they

determine the variance and skewness of the distribution

through the shape parameter u [Eq. (1)]. In particular,

b̂1 brings heteroscedasticity into the model: it allows

the precipitation uncertainty to be a function of the

precipitation intensity. As expected, representativeness

error of a single observation increases with the size of

the target grid box, in agreement with results from

previous studies (Lopez et al. 2011).

The overall good agreement between the coefficients

estimated from HDOBS and the two other datasets is

noticed for four of the five parameters. Parameter â0 is

smaller for NEXRAD, but MPAS has similar values to

HDOBS. Parameter â1 is smaller thanHDOBS for both

NEXRAD andMPAS and fluctuates between 0.9 and 1.

Parameter b̂0 appears to be similar for all three datasets.

d is small, with the estimates for HDOBS being larger

FIG. 3. For (left) NEXRAD and (right) MPAS, estimated parameters b̂1 for different combinations of smaller

scale (DB; x axis) and larger scales (DA). From left to right, successive lines correspond to increasing value ofDA (see

the text for the exact values). Values for point observations (DB 5 0) are extrapolated and are represented by

circles.

FIG. 4. Estimated parameters for the CSGDmodel, â0, â1, b̂0, b̂1, and d̂, as a function of the averaging scaleDA (km) usingHDOBS (red

lines). Black lines indicate the 5%–95% confidence intervals estimated with block bootstrapping. Extrapolated parameters for DB 5 0

from the NEXRAD (dark gray points) and MPAS (light gray points) datasets are also reported (see the text).
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than for both the other datasets. For these four coeffi-

cients, estimates based on NEXRAD and MPAS are

generally within the uncertainty margins associated with

the estimates based on HDOBS. The main difference

is observed for one coefficient influencing the distribu-

tion variance: b̂1. This parameter is clearly smaller for

NEXRAD and MPAS and converges for the two data-

sets at larger scales DA. For smaller scales, MPAS-based

estimates are closer to HDOBS-based estimates and

in any case within their uncertainty margins while

NEXRAD-based estimates are below the 5% confidence

intervals. NEXRAD and MPAS are gridbox-averaged

precipitation products, but areal precipitation is derived

from a limited number of point observations (minimum 5)

in theHDOBS case. This could explain partially the larger

multiplicative coefficient b̂1 for HDOBS with respect to

the two other datasets.

The estimated parameters characterize observation

representativeness error throughout the year. However,

seasonality in the magnitude of representativeness error

should be expected (Lopez et al. 2011). Recently, a

nonparametric approach for precipitation postprocess-

ing has been proposed that incorporates meteorological

conditions as an additional source of information for

a better representation of precipitation subgrid-scale

variability (Pillosu and Hewson 2017). Following this

idea, future refinement of the present method could for

example consider CSGD parameters that vary as a

function of season, orography, or region (e.g., tropics vs

extratropics).

c. Model validation

The parametric model is validated by means of PIT

histograms and derived statistics (section 2c). We check

whether the fitted model, a function of the observation

at scale A (yA), appropriately captures the observa-

tion at scale B (yB). For this purpose, each sample of

pairs (yA, yB) is split in two subsamples of equal size.

Parameters are estimated on the first half while the

second half is used to assess the reliability of the model.

Random selection is applied for the partitioning of the

dataset.

For each smaller-scale observation yB, 19 equally

spaced quantiles (with probability level 5%, 10%, . . . ,

90%, 95%) are derived from the fitted CSGD driven by

the larger-scale observation yA. The rank of yB within

the set of quantiles for each pair (yA, yB) is aggregated

and displayed in the form of a histogram. Figure 5 shows

the resulting PIT histogram forHDOBS for an area with

length DA 5 30km. The derived statistics, reliability

index (RI) and entropy c, are indicated on the histo-

gram. PIT histograms for the other datasets and aver-

aging scales DA are summarized by these two summary

statistics (not shown). In Fig. 5 (left), the histogram

looks mostly flat, which indicates good reliability of the

model. Similar values of RI and c are obtained for other

datasets and aggregation scales, RI being in any case

below 0.2 and c always exceeding 0.99 (not shown).

A further check consists of a visual inspection of

quantile–quantile (Q–Q) plots for random draws of the

parametric distribution and a set of points observa-

tions. The Q–Q plots help in diagnosing whether the

two sets of precipitation amounts are drawn from the

same marginal distribution. An example is provided in

Fig. 5b. Here again, good agreement is visible between

model output and observations. Relative to the Q–Q

plot for the original sample pairs (gray points), the

fitted model better captures the marginal distribution

of the point measurements, in particular its tail. In

other words, the CSGD approach allows us to generate

large precipitation amounts at a more appropriate

frequency.

4. Ensemble forecast verification

In this section, we assess the performance of 24-h

precipitation forecasts from ECMWF’s medium-range

ensemble forecasts (ENS). For illustration purposes, we

choose a verification period covering summer (June,

July, and August) 2018 and a verification domain cor-

responding to the European area shown in the top panel

of Fig. 1. Rain gauge measurements from SYNOP ob-

servations and the corresponding nearest grid-point

forecasts are used in the verification process. The hori-

zontal grid spacing of ENS forecasts is about 18 km.

From Fig. 4, we read the estimated CSGD parameters

for this averaging scale (DA 5 18 km):

â
0
5 0:02, â

1
5 1:0, b̂

0
5 0:0, b̂

1
5 2:0, and

d̂5 0:02. (8)

These parameters allow us to make the link between

point measurements and averaged precipitation at the

model scale. This information is now used to account for

observation uncertainty in the verification process.

a. Perturbed-ensemble approach

To account for observation error in the verification

process of ensemble forecasts, we apply the so-called

perturbed-ensemble approach that consists of convolving

the forecast and observation error distributions (Anderson

1996; Saetra et al. 2004; Candille andTalagrand 2008). This

approach leads to scoring rules that favor forecasts of

the truth, and it is therefore recommended as a generic

method to be applied in the presence of observation

errors (Ferro 2017).
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In practical terms, random noise is somehow added to

the forecasts. Each ensemble member gets assigned a

random value drawn from the fitted parametric distri-

bution whose scale and shape parameters are a function

of the original forecast value: the distribution is centered

over the forecast value and its spread accounts for rep-

resentativeness uncertainty. Combining Eqs. (3), (4),

and (8), the scale and shape parameters of the CSGD,

k and u in Eq. (1), take the form

k5
(0:021 x)2

4x
and u5

4x

0:021 x
, (9)

where x is the forecast value of a single ensemblemember.

This approach can also be seen as a forecast down-

scaling that provides a description of the subgrid-scale

uncertainty that is not captured by the NWPmodel. The

additional uncertainty from the perturbed-ensemble

approach is merged with the original forecast uncer-

tainty generated by the ensemble system, and together

they represent the forecast uncertainty at the observa-

tion scale. In terms of ensemble spread, as measured by

the standard deviation of the ensemble members with

respect to the ensemble mean, observation uncertainty

represents on average up to 45% of the total spread for a

forecast range of 1 day, and this ratio decreases to

reach a plateau around 15% for longer forecast lead

times (after day 10).

An illustration of the observation uncertainty associ-

ated with single forecasts is provided in Fig. 6. For ex-

ample, one member originally takes a value of 10mm

(24 h)21 as indicated by a black vertical dashed line.

Accounting for observation uncertainty, this member is

assigned a value drawn from the distribution depicted in

black when entering the verification process. Comparing

this example with the case of a forecast with original

value 0.5 (light gray) or 2mm (24h)21 (dark gray), we

see that the parametric model allows us to adjust the

level of uncertainty as a function of the precipitation

intensity.

b. Verification metrics

The impact of accounting for observation uncertainty

in the verification process is assessed by focusing mainly

on binary events. Two complementary verification tools

are used: the reliability diagram, and the relative oper-

ating characteristic (ROC) curve (Wilks 2006). The

former focuses on forecast reliability, that is the ability

of the ensemble to capture the observation variability,

while the second focuses on the discrimination ability

of the forecast, that is its ability to distinguish between

event and nonevent. Numerically, ROC curves are

generated using the 51 possible probability thresholds

issued by the 50-member ensemble.

In terms of summary performancemeasures, the Brier

score (BS; Brier 1950) and the diagonal elementary

score (DES; Ben Bouallègue et al. 2018, 2019) are ap-

plied in the form of skill scores. The verification sample

climatology is used for the computation of DES as

well as for the computation of skill scores considering

the climatological probability of occurrence as a refer-

ence forecast. We also compute a general measure of

FIG. 5. (a) Model validation through PIT histograms and derived statistics. The dashed line indicates perfect

calibration; (b) Q–Q plots [mm (24 h)21] for the original sample (areal observations yA), displayed in gray, and the

fitted model (derived point observations ~yA), displayed in black (right), with respect to the original point obser-

vations yB. Results are for averaged observations for DA 5 30 km and point observations (DB 5 0 km) using the

HDOBS dataset.
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ensemble performance for continuous variables, namely,

the CRPS [see Eq. (5)]. For all verification metrics, block

bootstrapping with blocks of 3 days and 1000 iterations

is used to estimate confidence intervals. Applied to

pairwise differences, confidence intervals including 0

indicate nonsignificant differences when accounting for

representativeness.

c. Impact on verification results

The general impact of accounting for observation

uncertainty is shown in Fig. 7: CRPS (the smaller the

better), and relative CRPS difference, are plotted as a

function of the forecast lead time. Results with and

without observation uncertainty are compared. A large

impact is visible in particular at short lead times: from

12% at day 1, the relative difference becomes no more

statistically significant after day 7 (Fig. 7). Since the

ensemble spread (and forecast error) is limited at the

beginning of the forecast range, the scale mismatch be-

tween model and observations plays a substantial role.

This is less the case at longer ranges when the ensemble

spread (and forecast error) is larger.

Similar plots are provided in Fig. 8 but focusing this

time on a 1mm (24 h)21 threshold event. BS and relative

BS difference indicate a larger impact in this case (small

event threshold) with up to 22% relative difference at

short lead time (day 1). The impact on the Brier score is

indeed particularly important for small thresholds as

discussed below. Significant BS differences persists at

longer lead times. Moreover, in absolute terms, BS

exhibits a continuous increase (i.e., decrease in skill) with

lead time when accounting for observation uncertainty

(black line, Fig. 8a). This is not the case for the original

results (gray line) but it is consistent with the ex-

pected error growth of the forecast. A similar behavior,

although a bit weaker, can be seen in the CRPS.

The differences in terms of skill as measured by CRPS

and BS can be explained by the large improvement of

the forecast reliability when accounting for observa-

tion uncertainty. The ensemble spread is essentially in-

creased by the perturbed-ensemble approach and, as a

consequence, the perturbed-ensemble forecast is able to

better capture the variability of point observations. To

illustrate this point, reliability curves are shown con-

sidering two event thresholds: 1mm (24 h)21 in Fig. 9a

and 20mm (24 h)21 in Fig. 10a. With observation un-

certainty, the reliability curve is closer to the diagonal in

the former case, but the impact appears to be mostly

neutral in the latter case. The noticeable impact of the

perturbed-ensemble approach on the ensemble reli-

ability, as assessed here by reliability curves, is consis-

tent with results from previous studies (Saetra et al.

2004; Candille and Talagrand 2008). The lack of reli-

ability of high threshold forecast probabilities even after

addressing representativeness provides evidence that

there are remaining system problems that likely need to

be addressed through prediction system improvement

and/or postprocessing.

Now,we inspect the role of observation uncertaintywhen

assessing ensemble forecasts in terms of discrimination.

Figures 9c and 10c show the impact of accounting for

observation errors on ROC curves. For an event with a

1mm (24h)21 threshold, the impact is neutral: the two

curves that are compared are on top of each other

(Fig. 9c). The information content of the forecast is not

modified for this type of event when adding the obser-

vation uncertainty to the forecast. However, when fo-

cusing on larger event thresholds, such as 20mm (24h)21,

the area under the two curves clearly differs in terms of

extent (Fig. 10c). Note that the same number of members

and so the same number of probability thresholds are

considered in both cases. So, the perturbed-ensemble

approach seems to produce a ‘‘shift’’ in probability dis-

tribution that appears beneficial for users with small

probability thresholds. The ability of the perturbed

ensemble to forecast large precipitation amounts, and

so to capture the tail of the observation distribution, is

rewarded in terms of forecast discrimination. The in-

crease of ROC area estimates with the perturbed-

ensemble approach also confirms results from a previous

FIG. 6. Illustrative example of the perturbed-ensemble approach.

Observation uncertainty is accounted for by replacing the forecast

by a draw from the associated parametric distribution (represented

here by its cumulative distribution function). Examples for fore-

casts of value 0.5 (light gray; squares), 2 (dark gray; circles), and 10

(black; triangles) mm (24 h)21 as indicated by the dashed vertical

lines and corresponding uncertainty distributions represented by

the full lines.
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study that focused on 850-hPa temperature forecasts

(Candille and Talagrand 2008).

The sharpness diagram, which is usually included in

reliability diagrams, is here plotted separately. In Figs. 9b

and 10b, sharpness diagrams present the frequency of

occurrence associated with each forecast probability

level. Sharpness is not a measure of forecast skill per se,

but this forecast attribute helps diagnose the impact of

the perturbed-ensemble approach on the probabilistic

forecast. In general, increasing the ensemble spread re-

duces forecast sharpness. For example, for low threshold

events, when including observation uncertainty, we see a

decrease of the frequency of high-probability forecasts,

generally associated with overconfidence in a traditional

verification framework, and hence an improvement of the

forecast reliability. For high-threshold events, the num-

ber of forecasts with small probability values (falling in

the 10%–30% bins) is increased, which allows us to

capture more events (see ROC curve results), but this

increase in small probability frequency does not improve

the reliability of the forecast.

Figure 11 provides a summary of the forecast perfor-

mance at day 5 as a function of the event threshold.

In terms of Brier skill score (BSS), large impact is noted

for low-intensity events, while in terms of the diagonal

elementary skill score (DESS), larger differences are

visible for more high-intensity events. This result is

consistent with plots in Figs. 9 and 10, and with general

FIG. 8. As in Fig. 7, but for BS considering an event threshold of 1mm (24 h)21.

FIG. 7. (a) CRPS [mm (24 h)21] as a function of the forecast lead time with (black) and without (gray) accounting

for observation uncertainty, and (b) the corresponding CRPS relative difference (%). Vertical bars indicate

5%–95% confidence intervals.
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characteristics of BS and DES: BS is more sensitive to

reliability while DES is more sensitive to discrimination

(Ben Bouallègue et al. 2019).

The impact on DESS for high-intensity events sug-

gests that accounting for observation uncertainty could

be crucial when assessing forecast skill for high-impact

events. When the focus is exclusively on extreme events,

that is, on the tail rather than on the whole distribution,

an accurate estimation of the skill in the presence of

observation uncertainty would probably benefit from a

more pertinent model definition with the use, for ex-

ample, of parametric distributions based on extreme

value theory (Friederichs 2010).

To assess the robustness of our results, the sensitivity

of the verification results to the specification of obser-

vation uncertainty is also investigated. For this purpose,

we consider observation uncertainty specification based

only on the analysis of the NEXRAD and MPAS

datasets. The CSGD parameters estimated using these

two datasets differ mainly in terms of b̂1 with respect to

the original set of parameters based on the analysis of

the HDOBS dataset (see Fig. 4). So, we can simply set

b̂1 5 1:5 in Eq. (8) and recompute scores. With this pa-

rameter setting, the CRPS relative difference before and

after accounting for representativeness drops to 9% (in-

stead of 12%) at day 1 and to around 1% (instead of 2%)

at day 10 (not shown). There are also quantitative dif-

ferences in terms of BS and DES, but the qualitative

impact is the samewhen using amore conservative set of

parameters. As a further step, one could include in the

verification results uncertainty associated with the esti-

mation of the observation uncertainty itself.

5. Conclusions

This paper provides a general method for accounting

for observation uncertainty when verifying ensemble

precipitation forecasts. First, a parametricmodel based ona

censored shifted gammadistribution is fitted to describe the

representativeness error associated with point precipitation

observations. This model, which provides a link between

representativeness error and precipitation intensity, is

FIG. 9. (a) Reliability diagram, (b) sharpness diagram, and (c) ROC curve for an event threshold of 1mm (24 h)21. Results are shown

with (black) and without (gray) accounting for observation uncertainty when verifying ensemble precipitation forecasts at day 5. Vertical

bars indicate 5%–95% confidence intervals.

FIG. 10. As in Fig. 9, but for an event threshold of 20mm (24 h)21.
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successfully validated by means of PIT histograms and Q–

Qplots. Second, a perturbed-ensemble approach is applied:

it consists of perturbing each ensemble member by means

of this parametric model. This step allows us to include the

uncertainty associated with station measurements in the

verification process. Verification results derived with and

without the perturbed-ensemble approach are compared

and analyzed. It is shown, in summary, that accounting for

observation representativeness error can have a large im-

pact on the assessment of forecast reliability, forecast skill

at short lead times, and potentially on forecast discrimina-

tion ability for high-intensity events.

An important side benefit of this study is that it pro-

vides the basis for a model-independent postprocessing

method. Ensemble members (or deterministic forecasts)

can be dressed with a CSGD using the parameters esti-

mated in this study. The model fitting is based on inde-

pendent observations only and so can be applied to

forecasts from anymodel, simply adapting the parameters

as a function of the model grid spacing. The derived

probabilistic forecasts could be interpreted as valid at any

given location of a model grid box. The proposed ap-

proach is fully parametric and, as such, is straightforward

to apply (by any direct model-output user or forecast

provider) to generate asmany ‘‘members’’ as desired. This

postprocessing can be seen as a way to account for model

limitations that are due to subgrid-scale uncertainty, but it

cannot correct for model-specific deficiencies.

The method proposed here is simple in its formu-

lation and relies on only five parameters to describe

observation uncertainty in general situations. This

model could be developed further by considering that

subgrid-scale uncertainty is weather-situation-dependent

or by accounting for subgrid-scale orographic effects. For

example, coefficients could vary with season and/or ob-

servation location. A more complex model would benefit

both verification and potential postprocessing applications.
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